
 VVoolluummee 77 •• NNuummbbeerr 22 MMaarrcchh 22001166 -- SSeepptt 22001166 pppp.. 119977--119966 aavvaaiillaabbllee oonnlliinnee aatt wwwwww..ccssjjoouurrnnaallssss..ccoomm

DOI: 10.090592/IJCSC.2016.131 Page | 197

GGrraapphh SSttoorraaggee OOppttiimmiizzaattiioonn
Sandeep Kaur

1
, Er. Navjot Kaur

2
,

1
Student M.Tech(CSE),

2
Assistant professor

Department of Computer Science and Engg, Sri Sai College of Engg & Tech, Amritsar.

sandeep,hundal1@gmail.com
1
, navjot_bhullar_88@yahoo.co.in

2

Abstract: Graph is a data structure widely used now a day in different fields of computer science. It represents the relationship

between one and more nodes. With the growth of internet technology social networking websites are also increased and to store

the information about friends it require a graph. The intent of this paper is to propose a solution to optimize the storage of graph

without using adjacency matrix. Efficient mapping of graph in the binary tree with some constraints is its goal.

General terms: Adjacency matrix, Treaps, Binary tree.

Keywords: Storage optimization, Data Structure.

I. INTRODUCTION

With the growth of technology application of graph

data structure is also grow and now a day there is no

any area in computer science where graphs are not

used .Graphs are widely used in data mining, social

networking sites, scheduling the processes by

operating system, in networking for finding shortest

path and lot more. So it needed to optimize the

storage of graph by using efficient data structures.

The data structure commonly known for storing

graph is adjacency matrix which is a squared matrix

of n*n size for storing n nodes in the graph. Entry in

matrix is 1 if there is an edge between the nodes and

is 0 if no edge is present. It take very large space in

main memory and database for storing a large graphs

of thousands of nodes as these are present currently

in the social networking sites. In social networking

sites a node is linked with hundreds of other nodes

and has no relation with thousands of nodes so it is

wastage of memory to store the 0‟s for no link

present. And there is also lot more problems with

adjacency matrix such that insertion in static arrays

requires changing the size of array dynamically.

Deletion requires moving the all elements to shrink

the array. Then there is a data structure treaps is used

for optimizing the graph storage by mapping the

graph into new data structure name as treaps. It is a

random binary search tree which is a binary search

tree for a key value and heap for other priority value.

In this also a problem exist if mapping the complete

tree using this data structure then it takes more space

than adjacency matrix also. It is specially designed

for social networking sites in which it is always true

that the probability of complete graph is negligible.

So a new approach is proposed in which graph

mapped into a binary tree which reduces space

almost half of the treaps. Basically treaps removes

only zeros from the adjacency matrix but also require

more space to store the nodes.

II. PROPOSED TECHNIQUE

This paper proposed technique to store and map the

graph into a binary tree which optimize the space

required for storage of graph for large friendship

networks exist in social networking sites as well as a

network of railway, roads and structure of chemical

compounds.

Algorithm for Insertion

Input Data

1. Key value of node as „key‟.

2. Priority of node as „pr‟.

3. Root node as „root‟.

4. Adjacent key as „adj‟ =adjacent[i] where I

approaches from 0 to number of adjacent

nodes to that key.

1. Set new->key=key;

2. Set new->pr=pr;

3. If root=NULL then

4. Set root=new;

5. Return;

6. Set ptr=root;

mailto:sandeep,hundal1@gmail.com
mailto:navjot_bhullar_88@yahoo.co.in

 VVoolluummee 77 •• NNuummbbeerr 22 MMaarrcchh 22001166 -- SSeepptt 22001166 pppp.. 119977--119966 aavvaaiillaabbllee oonnlliinnee aatt wwwwww..ccssjjoouurrnnaallssss..ccoomm

DOI: 10.090592/IJCSC.2016.131 Page | 198

7. If(adj<key)

8. Repeat while ptr!=NULL do

9. par= search(adj); //search adjacent key

location

10. if(par->left=NULL)

11. par->left=new;

12. return;

13. else

14. if(par->right=NULL)

15. par->right=new;

16. return;

17. else

18. adj=adj[i+1];

19. goto step 7;

20.else

21. par=searchRight(); //search any key

which do not have right child

22. par->right=new;

23. return;

III IMPLEMENTATION DETAIL

Let G be a graph having V a set of vertices and E

a set of edges. Consider a graph shown in figure

1.

Figure 1.Graph

The corresponding adjacency matrix for above graph

is shown in figure 2 .It shows as there are 12 nodes in

V there needs to 12*12 matrix and which is a static

array very difficult to insert new node and delete the

existing one.

Figure 2. Adjacency Matrix

STRUCTURE OF PROPOSED NODE

Each node store the information of key , its priority,

pointer to the array of adjacent nodes, pointer to the

sibling node, pointer to the left child and right child.

As shown in figure 3.

 VVoolluummee 77 •• NNuummbbeerr 22 MMaarrcchh 22001166 -- SSeepptt 22001166 pppp.. 119977--119966 aavvaaiillaabbllee oonnlliinnee aatt wwwwww..ccssjjoouurrnnaallssss..ccoomm

DOI: 10.090592/IJCSC.2016.131 Page | 199

Figure 3. Node structure

Table 1 shows priority of different nodes and

adjacent nodes to it.

A B C D E F G H I J K L

4 5 2 6 5 3 4 4 4 4 3 2

B

,E

,

H

,L

A,

D,

G,

J,

K

F

,

I

B,

E,

F,

H,

J,

K

A,

D,

G,

I,J

C

,

D

,

G

B

,

E

,F

,

L

A

,

D

,I

,J

C

,E

,

H

,

K

B

,

D

,E

,

H

B

,

D

,

J

A

,

G

Table 1.

 INSERTION OF NODES

From Table 1 key value is „A‟ and priority is 4. So as

root is Null so „A‟ inserted in the root as shown

below.

Figure 4.

Next node is B and is friend of A which have

available left pointer NULL so it will be left of A and

B deleted from list of A as shown below.

Figure 5.

Now next node is C have friends which have higher

key value so it can be in right of A.

Figure 6.

Similarly all the nodes inserted in the tree the

conditions are only as following:

1. If a node has to insert and root is empty then

insert it on the root.

2. Tree is Min heap with key values Minimum

value of key is at the top and others are at the

bottom, it also helps in searching the node.

3. If a node has friend have all child then check for

next friend else it can be inserted first in left then

in right.

4. For checking the list of friend first go to list of

adjacent friends, if it has less number of friends

then priority, than check its left child, if it is

present then it also its friend. If again it is less in

number than go check whether it is left of its

parent, if it is than parent is also a friend, if again

the number of friends is less then priority then

check its right friend. Calculation of priority and

finding the friends in the tree is as follows:

 VVoolluummee 77 •• NNuummbbeerr 22 MMaarrcchh 22001166 -- SSeepptt 22001166 pppp.. 119977--119966 aavvaaiillaabbllee oonnlliinnee aatt wwwwww..ccssjjoouurrnnaallssss..ccoomm

DOI: 10.090592/IJCSC.2016.131 Page | 200

1. Priority = Number of elements in

adjacent friend list of node.

If it is less then,

2. Priority = Number of friends in

adjacent list + Left child.

If again it is less then,

3. Priority = Number of friends in

adjacent list + Left child + Parent node

(if node is left child of its parent).

If again it is less,

4. Priority = Number of friends in

adjacent list + Left child + Parent node

(if node is left child of its parent) +

Right child.

Then final tree of figure 1 graph is mapped

as shown in figure 7.

III. CONCLUSION

The proposed approach has promising result and

required very less storage than adjacency matrix as

well as treaps for large graphs. The technique

implemented in this paper is also easy to implement

and tree can be scaled for a large network. The

proposed solution tremendously reduces the storage

requirement. For above graph in figure 1 where

adjacency matrix require 144 bytes for storage

proposed approach require only 97 bytes. The given

solution can be used for any network or graph

application such as railway network, routing network,

chemical compounds etc.

Figure 7.

 VVoolluummee 77 •• NNuummbbeerr 22 MMaarrcchh 22001166 -- SSeepptt 22001166 pppp.. 119977--119966 aavvaaiillaabbllee oonnlliinnee aatt wwwwww..ccssjjoouurrnnaallssss..ccoomm

DOI: 10.090592/IJCSC.2016.131 Page | 201

REFERENCES:

[1] Deepak Garg and MeghaTyagi 2012:”Comparative analysis of dynamic graph techniques and data

structure”;IJCA 45-5.

[2] S.G. Shirinivas 2010: ” Applications of graph theory in computer science an overview”; IJEST Vol.2(9).

[3] R.Seidel and C.R. Aragon. 1996;”Randomized search trees”;Algorithmica,16:464-497.

[4] Dharya Arora and ShaliniBatra;” Using treaps for optimization of graph storage” ,IJCA vol. 41-no. 14.

[5] Chris Lattner: “Heap Data Structure Analysis and Optimization “, Ph.D. Thesis.

[6] Day, A. C. 1976, “Balancing a Binary Tree, Computer Journal”,19,360-361.

[7] Vinod Prasad 2011 “A Forest of Hashed Binary Search Trees with Reduced Internal Path Length and better

Compatibility with the Concurrent Environment”;IJCAvol 33-n0. 10.

